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surface tension and curvature of the fluid, and surface gravity of the black hole. We also

argue that the Rayleigh-Plateau instability in a fluid tube is the holographic dual of the

Gregory-Laflamme instability of a black string. Associated with this fluid instability there

is a rich variety of phases of fluid solutions that we study in detail, including in particular

the effects of rotation. We compare them against the known results for asymptotically flat

black holes finding remarkable agreement. Furthermore, we use our fluid results to discuss

the unknown features of the gravitational system. Finally, we make some observations that

suggest that asymptotically flat black holes may admit a fluid description in the limit of

large number of dimensions.
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1 Introduction

The tantalizing similarities between, on the one hand, the physics of black holes, and on the

other hand, the properties of soap bubbles and fluid lumps, have been observed from old

and indeed motivated approaches like the membrane paradigm. A black hole is bounded

by a smooth horizon with uniform surface gravity, in analogy with the surface of a fluid

droplet which, under the effect of surface tension, assumes a smooth shape with constant

mean curvature. The negative specific heat of a black hole, and its concomitant Hawking
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radiation, bear a resemblance to the evaporation of a fluid droplet. More recently, refs. [1–

3] pointed out a striking similarity between the Rayleigh-Plateau instability of a column

of fluid and the Gregory-Laflamme instability of black strings [4, 5].

However, when one tries to take these observations beyond the level of mere analogies,

a number of apparent difficulties arise. A soap bubble, or a lump of fluid —at least a static

one— strives to minimize its surface area, whereas a black hole tends to maximize the area

of its horizon. It is also difficult to make precise in which sense the surface gravity relates

to the surface tension of the fluid, or whether it should be related instead to the mean

curvature of the fluid surface. Underlying these difficulties is the question of whether there

is any regime in which the gravitational dynamics of black hole horizons can be precisely

mapped into the dynamics of fluids.

The issue can be decisively settled within the context of the AdS/CFT correspondence,

which turns the analogy into a precise duality at least for a certain class of black holes in

Anti-de Sitter space. Refs. [6, 7] have shown that large black holes in AdS gravity can be

mapped to solutions of the Navier-Stokes equations of a conformal fluid. In this framework,

large black holes in a spacetime asymptotic to AdS with boundary B correspond to fluid

configurations filling the spacetime B. However, the physics of these black holes differs

significantly from the physics of, say, the Schwarzschild black hole in asymptotically flat

space. For instance, large AdS black holes have positive specific heat, and thus do not

disappear via Hawking emission. In fact, the analogies mentioned above seem to lose some

of their motivation since the fluid duals to these black holes do not have a bounding surface.

Also, black strings exist in AdSd, with horizon topology R × Sd−2 extended in a direction

along an asymptotic boundary of topology Rt × R × Sd−2 [8–10], but when these black

strings are large they do not suffer from the Gregory-Laflamme instability [11]. In dual

terms, they correspond to a fluid filling the boundary. This fluid is locally stable under

plasma oscillations (i.e., sound waves propagating in the fluid) so in the long-wavelength

approximation these configurations are stable. Thus, these set-ups do not seem adequate

to make precise the connection between black holes and fluid lumps, and in particular the

instabilities that may beset them. We need the dual fluid to admit a bounding surface.

Such bounded fluid configurations arise naturally for gauge theories with a deconfine-

ment transition of first order. At temperatures just above the deconfinement transition,

lumps of deconfined plasma, described at long wavelengths as fluids, can exist separated

by a domain wall from the confining vacuum [12]. A gravitational dual of a theory with

this behavior is provided by Scherk-Schwarz (SS) compactified AdSd+2 gravity, whose so-

lutions asymptote to M
d−1 × S1, with S1 standing for the distinguished SS circle. Under

the approximation of a very thin domain wall, there are solutions for finite lumps of decon-

fined plasma whose dual gravitational solution must correspond to black objects localized

near the infrared end of SS-AdS. These solutions are perfectly regular, provided that the

SS circle shrinks to zero size in the bulk, in correspondence with the domain wall. This

implies that the topology of the corresponding event horizon is given by the fibration of

the SS circle S1 over the plasma lump geometry, with the circle shrinking to a point on the

boundary. Plasma balls and plasma rings correspond, respectively, to spherical black holes

and to black rings in the bulk. These were studied in [13] with an emphasis on the AdS5
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case, and the full phase diagram for balls and rings in AdS6 was obtained more recently

in [14]. Crucially, the horizon of the black hole is not mapped to the boundary of the fluid,

but to its entire bulk. Then the apparent contradiction between minimal fluid surface area

and maximal horizon area can be resolved.

Thus, this seems to be the correct framework to address the correspondence between

black holes and lumps of fluid. One aim of this paper is to clarify the puzzles discussed

above pertaining the variational principles that determine the equilibrium configurations of

a fluid and of a black hole, as well as the relation between physical magnitudes in both cases.

Having dealt with this, we attempt to uncover in the physics of these plasma lumps

some of the characteristic phenomena that higher-dimensional black holes exhibit (see e.g.,

[15–17]). In particular, we focus on plasma tubes, which are dual to black strings. As

mentioned above, fluid analogues of the Gregory-Laflamme instability and of non-uniform

black strings [18, 19] that branch off at its threshold have been investigated recently [1–

3, 20–22]. Here we reproduce and extend these results to include rotation, which uncovers

novel phases of non-uniform tubes. But now we can regard these results as more than

an analogy: following [7] they are actual solutions to a controlled approximation to the

Einstein equations in SS-AdS and thus describe gravitational dynamics of black holes and

black strings localized near the infrared in the SS-AdS spacetime.1

It turns out that these results show remarkable agreement with those found for black

holes and black strings in asymptotically flat space. This prompts the question of whether

the latter should admit, in some limit, a precise description in terms of fluid dynamics. After

all, even if the equivalence between AdS black holes and fluids is very satisfying and promis-

ing, it does not yet explain the observations that suggested an analogy between asymptoti-

cally flat black holes and fluids in the first place. While we do not have a complete answer to

this, we will make some observations that suggest that asymptotically flat black holes may

be accurately described by fluid equations in the limit of very large number of dimensions.

The plan of the rest of the paper is the following: section 2 reviews the basics of the

relativistic hydrodynamics of plasma lumps, and provides the dual identification between

temperature of the black hole and parameters at the surface of the fluid. Section 3 discusses

the equivalence between several variational principles for fluids. This allows to understand

how maximization of the entropy of a black hole can be equivalent to minimization of

the surface area of a fluid. In section 4 we explore static and rotating configurations of

plasmas in equilibrium in a space with one (large) compact direction, with a particular

emphasis on tubes extended along this direction. In section 5, a detailed analysis of the

Rayleigh-Plateau instability for these is performed. We obtain the dispersion relations for

the unstable modes, both for static (figure 5) and spinning tubes (figure 6). After these

analyses, we discuss in section 6 their range of validity, and in section 7 how they compare

to the phases and stability of black strings in vacuum gravity. Section 8 revisits the issues

posed at the beginning of the paper and suggests that vacuum black holes in the limit of

large number of dimensions may admit a fluid description.

1Strictly speaking, the analysis of [7] refers to black branes dual to fluids that fill the spacetime they live

in. We can reasonably expect that the extension to the situation of interest here should only be technically

more complicated due to the absence of analytic solutions for plasma balls.
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Note added. During the final stage of this project we have been informed of the

work [23], which overlaps with some of our results.

2 Hydrodynamic description of deconfined plasma lumps

2.1 Navier-Stokes and Young-Laplace equations

Large black holes in AdS correspond to deconfined gluon plasma in the boundary CFT. In

the long-wavelength approximation, this plasma behaves as a fluid, whose properties can

be deduced from its gravitational bulk description. In this approximation, one can perform

a derivative expansion, whose leading order is given by a perfect fluid, while next orders

introduce dissipative and diffusive phenomena. More precisely, it has been shown that the

long-wavelength sector of pure AdS gravity is described by Navier-Stokes equations on the

boundary, and the stress tensor of the corresponding fluid has been computed up to second

order in the derivative expansion in five [7, 24] and four dimensions [25].

We are interested in the case where the boundary theory admits a confining phase,

which close to the deconfinement temperature is separated from the deconfined plasma by

a thin domain wall [12]. We assume that our plasma lumps are large enough to neglect the

thickness of the wall. The analysis of this subsection follows largely [13]. We shall neglect

subleading dissipation and diffusion contributions.2 In this approximation, the deconfined

plasma fluid behaves as a perfect fluid, and the leading order stress tensor is given by the

sum of a perfect fluid part and a boundary surface contribution, describing the capillarity

of the fluid,

T µν = T µν
perf + T µν

bdry ,

T µν
perf = [(ρ+ P )uµuν + Pgµν ] Θ(−f) , T µν

bdry = −σhµν |∂f | δ(f) . (2.1)

Here, uµ is the fluid velocity, ρ, P and σ are its density, pressure and surface tension

respectively. The fluid boundary is defined by f(xµ) = 0, has unit normal nµ = ∂µf/|∂f |
pointing towards the confining phase, and hµν = gµν − nµnν is the projector onto the

boundary. The velocity field uµ is subject to the boundary condition

uµnµ = 0 , (2.2)

requiring that the fluid velocity must be orthogonal to the boundary normal or else the

fluid would not be confined inside the boundary but flow through it. Finally, Θ(−f) is the

Heaviside function (Θ(−f) = 1 inside the fluid and zero everywhere else).

The equations describing the dynamics of the fluid follow from the conservation of

the energy momentum tensor (2.1). The volume and boundary contributions must van-

ish independently; the former, projected along the fluid velocity uν yields the relativistic

continuity equation,

uµ∇µρ+ (ρ+ P )∇µu
µ = 0 , (2.3)

2In particular, for stationary equilibrium solutions, these contributions vanish. We will comment on the

effects of higher order corrections on the analysis of the perturbations near the end of the article.
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(where ∇µu
µ = θ is the expansion of the fluid) that we use to reduce the remaining

equations to the relativistic Navier-Stokes equation,

(ρ+ P )uµ∇µu
ν = − (gµν + uµuν)∇µP . (2.4)

Here uµ∇µu
ν = aν is the acceleration of the fluid and gµν + uµuν is the projector onto the

subspace orthogonal to uµ.

Now consider the boundary contribution to the conservation of the stress tensor,

[(ρ+ P )uµuν + Pgµν ] |∂f |nµ + σ∇µ (hµν |∂f |) = 0 . (2.5)

Projecting this equation onto nν , using (2.2), and integrating across the boundary we get

P< − P> = σK , K ≡ h ν
µ ∇νn

µ , (2.6)

where K is the trace of the boundary’s extrinsic curvature (twice the mean curvature H of

the bounding surface), and P<−P> is the pressure jump when we cross the boundary from

the exterior into the interior. Equation (2.6) is the Young-Laplace equation that describes

the capillary pressure difference ∆P sustained across the interface boundary due to surface

tension σ [26].

2.2 Stationary plasma configurations

The Young-Laplace equation we found in the last subsection expresses the balance of

forces on the plasma boundary and holds in the most general dynamical situation. We

will turn now to the study of stationary plasma configurations in hydrodynamical and

thermodynamical equilibrium.

To begin with, we need to characterize stationary configurations of plasma. Let us as-

sume that the background spacetime is stationary, with stationarity timelike Killing vector

ξ, and a set of commuting, linearly independent spacelike Killing vectors χI , corresponding

to the isometries of the background. Of the latter, the subset that commutes with the

velocity field will also be symmetries of the fluid, LχI
u = 0. The associated conserved

charges will be the energy E and the linear/angular momenta JI of the plasma associated

to fluid symmetries.

Let P be the spatial region filled by the plasma, ∂P its boundary, and uµ the velocity

field of the fluid. Stationarity, for an isolated system, requires that there be no dissipation,

and therefore the bulk and shear viscosity terms of the stress tensor must vanish. This

condition is met if and only if the expansion θ and the shear σµν of the fluid both vanish.

Under these assumptions, one can show that there exists a function α such that αuµ is a

Killing vector.

Indeed, for a shearless, expansion-free velocity field,

∇µuν = ωµν − uµaν , (2.7)

where ωµν is the vorticity of the fluid and aµ its acceleration. Moreover, a fluid with local

entropy density s and local temperature T has to satisfy the Euler relation,

ρ+ P = T s . (2.8)

– 5 –
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Differentiating this equation and using the first law of thermodynamics, we get the Gibbs-

Duhem relation dP = sdT . Hence, since for a stationary configuration uµ∇µP = 0, the

Navier-Stokes equations can be rewritten as

aµ = −(ρ+ P )−1∇µP = −∇µ ln T , (2.9)

where, in the last step, we used both the Euler and the Gibbs-Duhem relations. Note that

this equation expresses simply the fact that the heat flux vanishes

qµ = −κ(gµν + uµuν)(∇νT + aνT ) = 0 (2.10)

or, in other words, stationary plasma configurations are both at hydrodynamical and ther-

mal equilibrium. Substituting equation (2.9) in (2.7) it follows that

∇(µ(αuν)) = αu(µ∇ν) ln(αT ). (2.11)

Hence, if we choose the function α to be inversely proportional to the local temperature

of the plasma, α = T/T with T an integration constant, the vector field αuµ solves the

Killing equations, and must therefore be a linear combination of the Killing vectors ξ and

χI .
3 Hence, stationary configurations have a velocity field given by

u =
T
T

(ξ − ΩIχI) . (2.12)

The Killing vectors appearing here are a subset, although not necessarily the full set (since

there may be rotational symmetries with no rotation velocity of the fluid in their direction),

of the abelian symmetries of the fluid, which themselves are a subset of the symmetries of

the background. The most general solution is determined by the constant parameters T

and ΩI , since the local temperature T is then fixed by the relation u2 = −1 to be

T = γ T , (2.13)

where

γ−1 =
√
−(ξ − ΩIχI)2 (2.14)

is the redshift factor relating measurements done in the laboratory and comoving frames,

and the constant T is the equilibrium plasma temperature. It follows from the general

form (2.12) of uµ that a stationary equilibrium fluid configuration has to be in rigid roto-

translational motion.

Combining the Euler relation (2.8) and the Young-Laplace equation (2.6), we can relate

the temperature parameter T of the fluid (which, for a non-boosted lump in an ultra-static

background spacetime with ξ2 = −1, is the temperature of the fluid at the axis of rotation)

to a combination of several magnitudes at the fluid surface,

T =
σK + ρ

γs
. (2.15)

3Actually, it could depend linearly on Killing vectors not commuting with χI . However, one can always

choose the set of Killing vectors χI to be adapted to the motion of the fluid under consideration.
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In the duality to a black hole, T corresponds to the Hawking temperature of the horizon.

We see that T is not simply proportional to the surface tension or to the mean curvature,

although it grows linearly with either of them. Note also that for a static fluid K will be

constant over the surface, but in a stationary configuration the curvature K will adjust

itself to variations of the fluid velocity near the boundary. Let us also mention that the

angular velocities of the black hole horizon are identified with the ΩI .

So far we have not specified the equation of state of the fluid. We are interested in the

d-dimensional (non-conformal) plasma describing the hydrodynamic limit of the (d + 1)-

dimensional CFT dual to Scherk-Schwarz reduced AdSd+2 gravity, whose equation of state

in d = n+ 3 dimensions reads (see [13])

ρ+ P =
n+ 4

n+ 3
(ρ− ρ0) , (2.16)

and

s = (n+ 4)α1/(n+4)

(
ρ− ρ0

n+ 3

)n+3

n+4

, T =

(
ρ− ρ0

(n+ 3)α

) 1

n+4

, (2.17)

with ρ0 and α constants. This equation of state is normalized such that the vacuum

pressure outside the plasma vanishes. When n = 0, if we consider the theory that is dual

to type II strings in SS-AdS5 × S5, we have

α =
π2N2

8Tc
, ρ0 =

π2N2T 3
c

8
. (2.18)

The surface tension of the domain wall has been computed numerically in [12] for n = 0

and n = 1. In units of ρ0/Tc they obtain

σn=0 = 2.0
ρ0

Tc
, and σn=1 = 1.7

ρ0

Tc
. (2.19)

For a plasma in equilibrium, it follows from (2.13) and (2.16) that the density and

pressure satisfy the relations

ρ = ρ∗γ
n+4 + ρ0 , P =

ρ∗
n+ 3

γn+4 − ρ0 , (2.20)

where

ρ∗ = (n+ 3)αT n+4 (2.21)

is the difference ρ − ρ0 between the plasma energy density and the energy density of the

confining vacuum at points where γ = 1. We see that all the dependence of the density on

the position is entirely given by the γ factors.

3 Variational principles for equilibrium plasma configurations

In this section we will show that the Young-Laplace equation (2.6) can also be obtained

using two equivalent variational principles, namely through a maximization of entropy

and/or through a minimization of potential energy. As an easy byproduct we will see

that these are also equivalent to minimization of the surface area for static fluids. Our

– 7 –
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formulation will be relativistic, fully covariant, and valid for a large class of stationary

background spacetimes. While the relation between these two variational principles is

probably well-known, we were not able to find it in the literature and we surmise that the

relativistic covariant generalization that we present is original.

3.1 Relativistic soap bubbles and second law of thermodynamics

Equilibrium plasma configurations must have constant temperature and are expected to

be those that extremize the entropy of the plasma while keeping its energy and momenta

fixed. We will use this variational principle to give an alternative derivation the Young-

Laplace equation, shedding a new light on the relation between black holes and their

membrane analogues.

As explained in the previous section, equilibrium configurations on a stationary back-

ground spacetime are in rigid motion, and have a velocity field uµ of the form (2.12), deter-

mined by the temperature T of the plasma and the boost parameters ΩI . Again ξµ is the

stationarity Killing vector and we choose a time coordinate t such that ξ = ∂t. This allows

us to foliate the spacetime into constant t hypersufaces Σt, that we use to define the con-

served charges. We call kµ the unit normal vector to these hypersurfaces, and we make the

additional hypothesis that the Killing vectors χI generate isometries of Σt, i.e., k · χI = 0.

Then, given any Killing vector ψµ, one can define the associated conserved charges

Q[ψ] =

∫

Σt

dv Tµνk
µψν , (3.1)

where dv is the induced volume measure on Σt.

To perform the maximization of the entropy at constant energy and momenta, we

define the action

I[P] = S[P] − βE[P] + ω̃IJI [P] , (3.2)

where β and ω̃I are the Lagrange multipliers associated to our constraints. The total

entropy of the fluid is the conserved charge associated to the entropy density current suµ,

S[P] = −
∫

P

(k · u)s dv , (3.3)

while the energy and momenta are given by

E[P] =

∫

P

[(ρ+ P )(ξ · u)(k · u) + (k · ξ)P ] dv − σ

∫

Σt

kµξνhµν |∂f |δ(f) dv ,

JI [P] =

∫

P

(ρ+ P ) (k · u)(χI · u) dv − σ

∫

Σt

hµνk
µχν

I |∂f |δ(f)dv . (3.4)

In addition to the bulk terms, both the energy E and the momenta JI have a surface

contribution proportional to the surface tension. The boundary term in E[P] corresponds

to the surface tension potential energy, and reduces to σ times the area of the boundary of

the fluid lump for a configuration respecting the spacetime symmetries in an ultra-static

background. The boundary term in JI [P] is present only if χI ·n 6= 0 so the fluid boundary

is not invariant under the action of χI , for instance when the surface is not axisymmetric.

– 8 –
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Taking the Lagrange multipliers to be given by

β = 1/T , ω̃I = βΩI , (3.5)

making use of the form (2.12) for u and eliminating the entropy density s by using the

Euler relation, the action simplifies to

I[P] = −β
∫

P

(k · ξ)P dv + βσ

∫

Σt

(k · ξ)|∂f |δ(f) dv. (3.6)

To extremize this action, we need to find its variation under a deformation of the region

P occupied by the fluid. Notice that, since by hypothesis the configuration is stationary,

the action is time independent, and its extrema are not changed if we integrate it over the

time t. Then, noting that the spacetime volume element is

dV = −(ξ · k) dv dt , (3.7)

it follows that the quantity we have to extremize assumes the form

∫
I[P] dt = β

∫

M

PΘ(−f) dV − βσ

∫

M

|∂f |δ(f) dV , (3.8)

where the integrals extend to the full spacetime M, and the resulting functional is man-

ifestly covariant. Also, note that the last integral is the area of the region of spacetime

(world-volume) spanned by the boundary of the fluid. To extremize (3.8) under deforma-

tions of P, we compute its variation under a change δf of the function f and integrate by

parts the last term,

δf

∫
I[P] dt = β

∫

M

(P − σK) δf δ(f) dV . (3.9)

We used here the well-known fact that the variation of the area of an hypersurface is

precisely given by twice the mean curvature, or its extrinsic curvature K. Therefore,

requiring that (3.9) vanishes for any deformation δf of the boundary, we obtain that the

variational principle boils down to

σK = P , (3.10)

where P is the pressure jump at the boundary of the fluid. This, for non-vanishing external

pressure, is again the Young-Laplace equation (2.6) that we derived in the last section using

the conservation of the energy-momentum tensor. This time we found that it also follows

from requiring extremization of plasma entropy for fixed energy and momenta. Note that

the derivation assumes only the stationarity of the configuration and of the background

geometry, and is independent of the fluid equation of state. Besides, the derivation does

not assume any condition on the shape of P, in particular it covers non-axisymmetric cases

where the geometry of the fluid configuration does not share the symmetries of the fluid

motion, as in the case of the two-lobed figures of equilibrium.

– 9 –
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3.2 Equivalent variational principles for spinning lumps

A universal behavior of fluids is that they always pick boundary configurations that reduce

their potential energy for a fixed volume. For static solutions, this implies that the area

of the fluid surface is minimized. For stationary solutions, the potential energy not only

has a surface tension term but also a centrifugal contribution. We want to verify the

equivalence between this potential energy minimization (hence a mechanical formulation)

problem and the entropy maximization problem (a thermodynamic formulation) studied

in the previous subsection.

To find an energetic formulation of the variational principle, we first observe that,

using (2.12), the total action (3.2) assumes the form (3.6) in which the second term in

the right hand side has the interpretation of surface potential energy, while the pressure

integral has the interpretation of centrifugal potential energy, since the radial variation of

pressure measures the centrifugal force per unit volume of fluid.

Therefore, we define a new action

Î[P] = Uσ[P] + Ucf [P] − ηV [P] , (3.11)

where Uσ[P] = σA[∂P ] is the surface tension potential energy associated to the area

A[∂P ] = −
∫

Σt

(k · ξ)|∂f |δ(f) dv, (3.12)

the centrifugal potential energy, obtained by integrating the pressure over the plasma

volume is

Ucf [P] =

∫

P

(k · ξ)(P − P>) dv , (3.13)

with P> an integration constant, and finally the volume V [P] reads

V [P] = −
∫

P

(k · ξ) dv , (3.14)

and is kept fixed as we perform the variation through the Lagrange multiplier η. Note

that, in an ultra-static background, A[∂P ] and V [P] reduce to the usual definitions of

boundary area and volume of the plasma, respectively. Again, one can then easily verify

that the Euler-Lagrange equation associated with (3.11) yields the Young-Laplace equa-

tion (2.6), and the Lagrange multiplier takes the value η = P>, where P> is the exterior

vacuum pressure.

The two variational approaches, maximization of entropy and minimization of area,

are equivalent because the actions (3.2) and (3.11) are proportional to each other. Indeed,

starting with the action (3.2), successive use of (3.4), (3.5) and (2.8) yields the following

relation between actions (3.2) and (3.11),

I[P] = −βÎ[P] . (3.15)

Since the two actions are the same up to a negative constant, minimizing the potential

energy for fixed volume, δÎ [P] = 0, is naturally equivalent to maximizing the entropy for

fixed conserved charges, δI[P] = 0.
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Finally note that in static configurations, ΩI = 0, the pressure is constant inside the

fluid and we can write

I[P] = −βÎ[P] = −βσ (A[∂P ] −KV [P]) , (3.16)

and when this action is extremized the Lagrange multiplier K is required to be twice

the mean curvature. Therefore, non-rotating equilibrium fluids have boundary shapes

that minimize the surface area for fixed volume and their boundaries have constant mean

curvature, a well known property of fluids.

Black holes satisfy the variational principle that their entropy is extremized for fixed

energy and angular momenta — this is essentially the first law. In the duality between

SS-AdS black holes and fluid lumps, the entropy, energy and spins are identified on both

sides, while the temperature is mapped according to eqs. (2.15) and ΩI are the angular

velocities. Then our analysis shows that maximization of the black hole horizon area

is equivalent, for static configurations, to minimization of the fluid surface area. When

rotation is present, the connection is less simple geometrically, but still easily expressed

as an extremization of a functional.

Thus, in this context the proposal in [1] to model black strings with non-gravitating

cylinders of fluids can be made exact. There are, however, some differences between the

analysis in refs. [1, 20] and ours: theirs was a study of non-relativistic fluids, whereas

our fluids are relativistic. For static fluids the differences are small,4 but for non-static

or out of equilibrium situations the relativistic corrections become crucial. But the more

important differences are that, first, we have a definite equation of state for the fluid and a

specification of the value of the surface tension. This allows us to compute thermodynamic

quantities of the fluid that are identified with those for the black hole, something that

was impossible in [1, 20]. Second, the number of dimensions for the fluid and the black

hole are different: a fluid in d spacetime dimensions is mapped onto a black hole in d + 2

dimensions. In particular, the entire volume of the fluid can be regarded as mapped onto

the black hole horizon.

4 Static and rotating equilibrium plasma configurations

In this section we specialize to the study of stationary axisymmetric rigidly rotating plasma

configurations in a flat spacetime and discuss the corresponding phase diagrams of solu-

tions. These also represent the phase diagrams for the dual black objects. We start with

a general description of the system we want to study, and then we obtain the differential

equation for the shape of equilibrium plasmas. We find the static plasma configurations

in any dimension n, and the rotating plasma configurations for n = 1 and discuss the

resulting phases.

4Namely, ρ + P ∼ ρ in the non-relativistic limit and the extrinsic curvature has time derivative terms

that disappear in the non-relativistic limit. These time derivative terms are however vanishing when dealing

with stationary solutions.
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4.1 General formulation of the stationary and axisymmetric case

The shape of stationary and axisymmetric plasma configurations is determined by the

Young-Laplace equation. The background geometry is d = n+3 dimensional flat spacetime

Rt×R
n+1×S1 (with n ≥ 1), and we choose to work in coordinates such that the metric reads

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2 + cos2 θ dΩ2
n−2) + dz2 , (4.1)

where θ ∈ [0, π/2], φ ∈ [0, 2π) and dΩ2
n−2 is the metric of the unit (n − 2)-sphere. For

n = 1 all the results can be reproduced by setting θ = π/2.

We consider rigidly rotating configurations with fluid velocity

uµ = γ (δµ
t + ωφδ

µ
φ) , γ =

(
1 − gφφ ω

2
φ

)−1/2
, (4.2)

with constant angular velocity ωφ. Note that a boost ωz as well as rotation in other planes

(if allowed by the dimension of the spacetime) could be easily added to our discussion.

These plasma configurations satisfy the equilibrium equation of state (2.20). Their

entropy S and conserved charges E, J are given, respectively, by (3.3) and (3.4) with the

relevant Killing vectors associated to (4.1) being ξ = ∂t and χφ = ∂φ. We will look for

surfaces of revolution invariant under the action of these vectors.

4.2 Static plasma lumps

Our discussion will be very succint since these configurations were studied in [20] and we

have rederived their main results. However, since we have an equation of state for the fluid

we are able to discuss the properties of the solutions in a different manner: we display the

phases in an entropy vs energy diagram. These quantities map directly into the entropy and

energy of the dual black holes and black strings in SS-AdS. Therefore a direct comparison

is possible to the diagrams that have been obtained for the black hole and black string

phases in vacuum gravity.

For a profile of the form r = R(z) the equations follow easily from the Young-Laplace

equation (2.6) which, as we have discussed extensively, requires the mean curvature K of

the surface of a static fluid to be constant. The equilibrium equation of state (2.20) fixes

this constant to

K =
ρ∗ − (n+ 4)ρ0

(n+ 3)σ
. (4.3)

There are three families of solutions to this equation:

• Uniform plasma tubes (UT): These solutions have constant radius r = Ro along

the circle, so K = n/Ro. These are essentially configurations of a plasma ball in

d− 1 = n+ 2 dimensions, times a straight line z, and have pressure and density

P = n
σ

Ro
, ρ = n(n+ 3)

σ

Ro
+ (n+ 4)ρ0 . (4.4)

• Plasma balls (B): These solutions are characterized by R(z) =
√
R2

o − z2, i.e., they

describe a (n + 1)-dimensional sphere of radius Ro, and extrinsic curvature K =

(n+ 1)/Ro, so

P = (n + 1)
σ

Ro
, ρ = (n+ 1)(n + 3)

σ

Ro
+ (n+ 4)ρ0 . (4.5)
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Figure 1. Entropy versus energy phase diagrams. The entropy is normalized to be one for uniform

plasma tubes. Uniform plasma tubes, plasma balls and non-uniform plasma tubes correspond to

squares, circles and triangles respectively. The left diagram, plotted for n = 1, is representative

for n ≤ 7, and shows that the preferred configuration is the plasma ball for small energy, and the

uniform plasma tube for higher energy. The unstable plasma ball branch merges with the non-

uniform plasma tube branch in the merger point. Above the critical dimension, for n ≥ 8 (the right

diagram corresponds to n = 12), the non-uniform plasma tubes become stable and become the

preferred configuration for an intermediate range of energies. The left figure should be compared

with figure 3 of [27] for the phases of non-uniform black strings. To plot these diagrams we used

the values α = 1, ρ0 = 0 and σ = 1.

• Non-uniform plasma tubes (NUT): For n 6= 0, there is a third family of static equi-

librium solutions that describe non-uniform plasma tubes. These configurations are

found by solving numerically a first integral of the equation for the mean curvature.

We analyzed these solutions numerically, and constructed the corresponding phase

diagrams in the E − S plane. These are shown for n = 1 (left) and n = 12 (right) in

figure 1. The preferred configuration, at a given energy, is given by the one with highest

entropy. There is a critical dimension n⋆ = 8 for which the qualitative behavior changes.

For n ≤ 7, the entropically favored configuration is the plasma ball for small energy, which

turns into a uniform plasma tube through a first order phase transition as the energy is

increased. The non-uniform plasma tube branch has always a lower entropy (figure 1,

left). However, for n ≥ 8, the uniform plasma tubes benefit entropically from generating

non-uniformities in an intermediate range of energies (figure 1, right).

The case n = 0 is special, since the fluid lives in a two-dimensional space and the uni-

form plasma strips and plasma disks are the only solutions with constant mean curvature.

Static plasma strip solutions have vanishing fluid pressure: since the section of the bound-

ary at constant z consists of just two points, there is no extrinsic curvature of the surface

that must be balanced by pressure. This means that capillarity does not exert any force

in the direction orthogonal to the plasma strip. This is consistent with the fact that the

surface area does not change when the tube radius changes. In this case, the configuration

is in a stable equilibrium, and no non-uniform plasma strip solution exists.

In the next section, we shall obtain a better understanding of these features in terms

of the mechanical stability properties of the uniform plasma tubes. Indeed, the existence
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of the non-uniform plasma tube branch can be inferred from the fact that the uniform

plasma tube changes its stability properties for a critical energy, at which it develops a

static unstable mode. This critical unstable mode implies a bifurcation point to a new

branch of static solutions that describe the non-uniform plasma tubes, and is associated to

the Rayleigh-Plateau instability. For n = 0, the corresponding threshold mode has infinite

wavelength, so there cannot be any non-uniform branches connected to the uniform strip.

Note also that one can have an arbitrary number of coexisting disconnected plasma

lumps. In the plasma fluid approximation, which is valid as long as they are far apart

compared to the mean free path of the fluid, they do not feel each other.5 In particular,

other phases in which the fluid is distributed in multiple plasma balls can be present,

but they have subleading entropy with respect to the single plasma ball in the phase

diagram. Also, one can construct new branches of non-uniform plasma tubes, known as

copy solutions, by unwrapping the original non-uniform plasma tube along the compact z

direction, and changing its periodicity. These new branches can be easily obtained through

scaling arguments [28]. Since they are subleading in entropy we will not consider them.

4.3 Rotating plasma lumps

The problem of finding general equilibrium solutions in dimension n is considerably com-

plicated by the presence of rotation, which breaks the SO(n+ 1) symmetry of the sections

at constant z to SO(2) × SO(n − 1) and introduces a dependence on the angle θ in the

profile of the lumps. Then one is forced to solve a partial differential equation. However,

this problem is not present when n = 1, where the transverse spheres are actually circles

so there is the same symmetry as in the static case and the equations reduce to ODEs.

Therefore we restrict our analysis of spinning lumps to n = 1. Even if there may be phe-

nomena of higher-dimensional tubes that we miss by this restriction, the case of n = 1 still

exhibits qualitatively new dynamics relative to the static situation.

We represent the boundary of the spinning lumps in terms of a height function h(r),6

f(r, z) = z − h(r) = 0 (4.6)

Then, use of the equilibrium equation of state (2.20) for the pressure and of the Young-

Laplace equation (2.6) yields the ODE for a stationary axisymmetric plasma configuration,

d

dr

(
rh′√

1 + h′2

)
+
ρ∗
4σ

r
(
1 − r2ω2

φ

)−5/2 − ρ0

σ
r = 0 . (4.7)

Some solutions to these equations were already studied in detail in [13, 14], namely,

balls, pinched balls and rings. Now they are constrained to fit along the z direction, which

we are taking to be compact. Two other solutions, the rotating uniform tube and the

uniform ‘hollow tube’ can be readily constructed out of them by simply taking the rotating

5For the dual black holes, this means separations larger than the cosmological length scale 1/
√
−Λ, and

their mutual gravitational interaction would involve massive Kaluza-Klein modes in the vacuum phase,

which is subleading.
6For the uniform tubes, the simplest boundary parametrization is instead f(r) = r − Ro = 0 and the

Young-Laplace equation gives ρc as a function of ρ0, Ro, ωφ.
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plasma disk and the plasma annulus that appear in one less dimension and translating

them uniformly along z.7 To make contact with this previous work we follow partially

their notation and define the dimensionless variables,

ω̃φ =
σωφ

ρ0
, v = ωφr , H(v) = ωφh(r) , k =

1

4

ρ∗
ρ0
, L̃ =

ρ0

σ
L , (4.8)

where L will be used to represent the length of the uniform tube with radius Ro and L̃ the

corresponding dimensionless quantity. Note also that reality of γ = (1 − v2)−1/2 requires

0 ≤ v ≤ 1.

Integrating twice (4.7) we get the function H(v) that describes the profile of the spin-

ning lumps,

H(v) =

∫ v

vo

−f(x)

(g(x)2 − f(x)2)
1

2

dx ; with f(v) = 2k− 3(v2 + 2c)γ−3, g(v) = 6ω̃φvγ
−3.

(4.9)

where c is an integration constant. Plasma rings have also a inner surface: its profile is

described by a similar expression obtained by multiplying the first relation in (4.9) by −1

and replacing vo → vi (with vi being the inner velocity; for details see [14]).

To make contact again with [14] we define the dimensionless energy, angular momentum

and entropy as

Ẽ =
ρ2
0E

4πσ3
, J̃ =

ρ3
0J

20πσ4
, S̃ =

ρ
11

5

0 S

20πα
1

5σ3
, (4.10)

where E, J, S follow from (3.4) and (3.3). It is also useful to introduce the following

functions:

Ẽt(vo) =
L̃

12ω̃2
φ

(
2kγ5

o

(
v2
o + 2 − 2γ−5

o

)
+ 3vo(vo + ω̃φ)

)

J̃t(vo) =
L̃kγ5

o

30ω̃3
φ

(
2γ−5

o − 2 + 5v2
o

)
, S̃t(vo) =

L̃k4/5

6ω̃2
φ

(γ3
o − 1). (4.11)

and

Ẽb(a, b) =
1

ω̃3
φ

∫ b

a
dv
(
vH(v)

(
k(4 + v2)γ7 + 1

)
+ ω̃φv

√
1 +H ′(v)2

)
,

J̃b(a, b) =
k

ω̃4
φ

∫ b

a
v3γ7H(v)dv , S̃b(a, b) =

k4/5

ω̃3
φ

∫ b

a
vγ5H(v)dv . (4.12)

We now discuss the seven families of axisymmetric spinning plasma lumps that we

found to be solutions of (4.7) (we present the ones with non-trivial profiles in figures 2, 3,

and 4. The figures should be rotated along the vertical axis v = 0):

• Uniform plasma tubes (UT): These have constant radius Ro along their length L.

They have ω̃φ = vo(kγ
5
o − 1), where γo ≡ γ

∣∣
vo

. Their energy, angular momentum and

entropy are Ẽ = Ẽt(vo), J̃ = J̃t(vo) and S̃ = S̃t(vo) as defined in (4.11).

7Observe that this is not possible for pinched balls since they do not exist for n = 0.
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Figure 2. Figures of equilibrium of a rotating plasma tube. From left to right, an ordinary non-

uniform rotating plasma tube (vm = .5, vo = .8, k = .628024), a pinched plasma tube (vm =

.201016, vo = .918, k = .15) and a plasma tube on the verge of splitting off a plasma ring (vm =

.201016, vo = .9133, k = .15). The parameters have been chosen such that the three tubes share

the same periodicity.
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Figure 3. Figures of equilibrium of a rotating plasma ball. From left to right, an ordinary rotating

drop (vo = .7, k = 2), a marginal rotating drop (vo = .1, k = 21), a pinched plasma ball (vo = .5,

k = .83) and a pinched ball on the verge of splitting of a plasma ring (vo = .7965, k = .5).
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Figure 4. Figures of equilibrium of a rotating plasma ring. On the left, a thin plasma ring (vi = .2,

vo = .6, k = 9) and on the right a fat plasma ring (vi = .1, vo = .4, k = 2).

• Uniform hollow tubes (UHT): These have two constant radii, outer Ro and inner Ri,

along their length L delimiting the tubular region inside which the fluid lies. The
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Young-Laplace equation on the inner and outer boundaries fixes a constraint between

these two radii, which can be written as ω̃φ = vo(kγ
5
o − 1) = vi(1 − kγ5

i ), where

γo,i ≡ γ
∣∣
vo,i

. The energy, angular momentum and entropy are Ẽ = Ẽt(vo) − Ẽt(vi),

J̃ = J̃t(vo) − J̃t(vi) and S̃ = S̃t(vo) − S̃t(vi), with the definitions in (4.11).

• Non-uniform plasma tubes (NUT): These tubes have a radius that varies from a non-

vanishing minimum, vm, up to a maximum, vo, as we go along their length. At both

these extreme points we have H ′(v) = −∞, and in between them H ′(v) is always

negative (so the point in between the two extreme points where H ′′(v) changes sign

has H ′(v) < 0); see figure 2.a. In the critical NUT configuration, H ′(v) = 0 at the

inflection point and the NUT and pinched NUT (discussed next) meet in what we call

the critical NUT. These boundary conditions imply the following relations between

the parameters,

c =
k

3

(
1 − v2

m

)−3/2 − 1

2
v2
m − ω̃φvm ,

ω̃φ =
1

6vo

(
1 − vm

vo

)−1 [
2k
((

1 − v2
o

)−3/2−
(
1 − v2

m

)−3/2
)
− 3

(
v2
o − v2

m

)]
. (4.13)

The energy, angular momentum and entropy of the NUTs are given, respectively, by

Ẽ = Ẽt(vm)+ Ẽb(vm, vo), J̃ = J̃t(vm)+ J̃b(vm, vo) and S̃ = S̃t(vm)+ Ẽb(vm, vo) where

we use the functions defined in (4.11) and (4.12).

• Pinched non-uniform plasma tubes (pNUT): These tubes also have a radius that

varies from a non-vanishing minimum, vm, up to a maximum, vo. At both these

extreme points we have H ′(v) = −∞. But, contrary to the NUT solutions, H ′(v)

now changes sign twice as v runs from vm to vo (so the point in between the two

extreme points where H ′′(v) changes sign has now H ′(v) > 0), see figure 2.b. These

boundary conditions still imply the relations (4.13) and the conserved charges of the

pinched NUTs are given by the same functional defined for the NUT in the previous

item. As the rotation increases we reach a configuration where we have a pNUT and

a plasma tube on the verge of splitting off a plasma ring; see figure 2.c.

• Plasma balls (B): These plasma configurations are oblate spheres. At the extreme

points they satisfy H ′(v = 0) = 0 and H ′(v = vo) = −∞. Moreover, H ′(v) is

always negative at the boundary as we go from v = 0 up to v = vo; see figure 3.a.

The condition H ′(0) = 0 fixes c = k/3 and H ′(vo) = −∞ requires f(vo) = g(vo)

which fixes ω̃φ = 1
6vo

(
2kγ3

o − 2k − 3v2
o

)
. Finally, the condition H ′(v) < 0 in the

interval (0, vo) implies k > 1. For k = 1 the critical ball configuration is reached

(see figure 3.b). Here, the plasma ball joins the pinched ball branch discussed next.

The conserved charges are given, respectively, by Ẽ = Ẽb(0, vo), J̃ = J̃b(0, vo) and

S̃ = Ẽb(0, vo) where we use the functions defined in (4.12). The balls must have a

distance between their poles smaller than the compact dimension length. The same

applies to the solutions we discuss next.
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• Pinched plasma balls (pB): These balls also have H ′(0) = 0 and H ′(vo) = −∞
which again requires c = k/3 and ω̃φ = 1

6vo

(
2kγ3

o − 2k − 3v2
o

)
. But contrary to the

plasma balls, H ′(v) changes from positive to negative sign in the interval (0, vo); see

figure 3.c. This requires 0 < k < 1. However not all k in this interval give a physical

solution. They must further satisfy H(v = 0) > 0. At the critical situation where

H(0) = 0 the pinched plasma ball branch joins the fat plasma ring phase discussed

next (see figure 3.d). The conserved charges of the pinched balls are given by the

same expressions as for the balls.

• Plasma rings (R): These annulus configurations are characterized by H ′(v
i
) = +∞

and H ′(vo) = −∞ at the inner and outer boundary, respectively, and for having

H(v
i
) = H(vo) = 0. This requires that f(v

i
) = −g(v

i
) and f(vo) = g(vo). For

fixed outer boundary velocity, vo = ωφRo, there are two possible inner velocities v
i

satisfying these conditions. The smaller one describes the fat plasma ring (that joins

the pinched ball branch at the critical configuration where v
i
→ 0) and the larger v

i

describes the thin ring (see figure 4). The two rings meet at a regular critical ring

when the two aforementioned v
i
’s are equal. The energy, angular momentum and

entropy of the rings are given, respectively, by Ẽ = Ẽb(vi
, vo), J̃ = J̃b(vi

, vo) and

S̃ = Ẽb(vi
, vo) with functions defined in (4.12).

There also appears the possibility of non-uniform hollow tubes (NUHT), i.e., hollow

tubes with an inhomogeneous profile along z, but we have not obtained direct evidence for

them. If they exist, it would be interesting to increase their rotation and investigate their

possible pinches and connections to other phases.

Having identified these families of plasma solutions, it should be interesting to repre-

sent their properties in a phase diagram where we fix the periodic direction length and the

energy of the solution, and let the entropy vary with the angular momentum (alternatively,

we could also fix L̃ and J̃ and represent the solutions in the S̃(Ẽ) diagram). This requires

substantial and delicate numerical work since this is a shooting problem on three parame-

ters. The curves for uniform tubes and balls with a fixed conserved charge can be obtained

relatively easily but the numerical search of the non-uniform tubes is considerably more

difficult. We leave this for future work.

5 Rayleigh-Plateau instability of plasma tubes

Non-relativistic fluid jets and liquid bridges in between two disk plates are unstable against

the so-called Rayleigh-Plateau instability if their length is larger than their transverse

perimeter. This instability is active even in the absence of gravity and surface tension is

the crucial mechanism responsible for it: in the simplest case, capillarity forces conspire to

reduce the surface area of the fluid. This is a long wavelength instability that makes the

fluid cylinder pinch-off.

In this section we show that uniform plasma tubes are naturally afflicted by the rel-

ativistic Rayleigh-Plateau instability and we will study in detail its properties. We start

by getting a good understanding of the mechanism responsible for the instability noting
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that there are perturbation modes that decrease the plasma tube potential energy while

keeping its volume fixed (so this statement is independent of whether or not the fluid is

compressible, i.e., of the equation of state). Equivalently, in view of the results of section 3,

these modes are unstable because they increase the entropy of the system while keeping its

conserved charges fixed. In subsection 5.1, this approach will allow to find the minimum

length below which the uniform tube can be stable. Then in subsection 5.2 we will find

the dispersion relation for this instability.

In the dual gravitational system, uniform black strings are expected to suffer from the

gravitational Gregory-Laflamme instability. It is also a long wavelength instability that

makes black strings longer than the horizon radius pinch. We will see that the plasma

surface tension and gravitational instabilities have similar properties.

5.1 Unstable threshold mode from entropy or potential energy variation

5.1.1 Threshold mode for static and boosted plasmas

Consider an axisymmetric perturbation on a uniform plasma tube,

r(z) = Ro + ǫR1 cos(kz) + ǫ2R2 , ǫ≪ 1 . (5.1)

We take the tube length to be given by the Rayleigh-Plateau wavelength because that is

where it might break, L = λ = 2π/k. The volume of the perturbed tube, up to a second

order expansion, is then

V = λ
π(n+1)/2

Γ
(

n+3
2

) Rn−1
o

(
R2

o +
n+ 1

2

(n
2
R2

1 + 2RoR2

)
ǫ2
)

+ O(ǫ3) . (5.2)

We require that the volume of the tube is kept fixed up to second order in the perturbation

(equivalently, its conserved charges must be kept fixed) so this constrains R2 as a function

of the lower order radius,

R2 = −n
4

R2
1

Ro
. (5.3)

The difference between the perturbed and unperturbed surface tension potential

energy is

∆Uσ = σ
2π(n+1)/2

4Γ
(

n+1
2

)
(
k2R2

o − n
)
R2

1ǫ
2 + O(ǫ3) (5.4)

where we used (5.3). Unstable modes are those that decrease the potential energy, i.e.,

surface area, of the fluid tube. So the condition ∆Uσ 6 0 for fixed volume requires

kRo 6
√
n , (5.5)

For static plasmas the threshold unstable mode is then k =
√
n/Ro and it increases with

the spatial dimension. Finally, a boost along the z-direction has only a kinematical effect

on this instability, Lorentz-contracting the threshold wavelength [29].
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5.1.2 Threshold mode for rotating plasma and non-axisymmetric modes

We now generalize the previous study to rotating and boosted uniform plasma tubes, as well

as non-axisymmetric perturbations on it. Again, we will restrict to the n = 1 dimensional

case, since for higher n, the profile of the drop has a polar angle dependence that prevents

an analytical study.

The general perturbation on the uniform plasma tube reads,

r(z, φ) = Ro + ǫR1 cos(kz) cos(mφ) + ǫ2R2 , ǫ≪ 1 . (5.6)

This perturbation includes axisymmetric modes (m = 0) as well as non-axisymmetric ones

(integer m 6= 0). Again, we take the tube length to be equal to the instability wavelength,

L = λ = 2π/k.

The volume of the perturbed tube, up to a second order expansion, is

V = λπR2
o +

λ

4

(
π
(
R2

1 + 8RoR2

)
+R2

1

sin(4mπ)

4m

)
ǫ2 + O(ǫ3) . (5.7)

We require that the volume of the tube is kept fixed up to second order in the perturbation

(equivalently, its conserved charges must be kept fixed) so this constrains R2 as a function

of the lower order radius,

R2 = − R2
1

4Ro
, for m = 0 ; R2 = − R2

1

8Ro
, for m 6= 0 . (5.8)

The potential energy of the tube is the sum of the surface tension and centrifugal

contributions as defined in section 3. Using the constraint (5.8), the total potential energy

difference between the perturbed and unperturbed configurations ∆U = ∆Uσ + ∆Ucf is

then given by (δm = 1 if m = 0 and vanishes otherwise)

∆U =
πλσ

4Ro
(1 + δm)

(
(
k2R2

o − 1 +m2
)
− 5

4

ρ∗ω
2
φR

3
o

σ

(
1 −R2

oω
2
φ − ω2

z

)−7/2

)
R2

1ǫ
2 + O(ǫ3) .

(5.9)

The Rayleigh-Plateau instability is active for wavenumbers that decrease the potential

energy of the fluid tube. So the condition ∆U 6 0 for fixed volume requires

k2R2
o +m2 6 1 +

5

4

ρ∗ω
2
φR

3
o

σ

(
1 −R2

oω
2
φ − ω2

z

)−7/2
, (5.10)

The inverse of the ratio ρ∗ω
2
φR

3
o/σ, that measures the competition between the surface

tension and centrifugal effects, is often called the rotating Bond number or Hocking pa-

rameter. Rotation increases the critical wavenumber making the plasma tube unstable for

a wider range of wavelengths. Only axisymmetric modes are unstable in the static case but

when rotation is added, non-axisymmetric modes can become also unstable for sufficiently

high velocity. We will discuss the dual gravitational interpretation of these unstable modes

in section 7.
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5.2 Rayleigh-Plateau dispersion relation

In this subsection we want to address the stability of a uniform plasma tube when we

perturb it. The dynamics of the perturbations is dictated by the hydrodynamic equations,

subject to appropriate boundary conditions.

Perturbations take the plasma away from thermal equilibrium and therefore viscosity

and diffusion effects start to contribute. The energy-momentum tensor of the fluid in-

cludes now not only the perfect fluid and the boundary surface tension terms (2.1), but

also a dissipative contribution. As we will show, the uniform plasma tube is afflicted by

the Rayleigh-Plateau instability and surface tension is the mechanism responsible for it.

Viscosity and diffusion play no role on the activation of the instability and have a sub-

leading effect on the dispersion relation, simply correcting the threshold wavelength and

the time-scale of the instability. Hence, in our analysis we shall neglect the dissipation

contribution to the fluid energy-momentum tensor, and simply comment at the end the

subleading effects it introduces.

To study the stability of rigidly rotating uniform plasma tubes, we consider a generic

unperturbed uniform tube with velocity (4.2). The precise expression for the unperturbed

plasma pressure and density is fixed once we specify the equation of state. In particular,

for the plasma we are interested in, these are specified by equations (2.16) and (2.20). The

particular choice of the equation of state will however not be fundamental in our analysis.

A generic perturbation on the uniform tube is described as

uµ = uµ
(0) + δuµ , P = P(0) + δP , ρ = ρ(0) + δρ , (5.11)

where we denote an unperturbed quantity by Q(0), and the perturbation as δQ. The

perturbed state (5.11) must satisfy the relativistic continuity and Navier-Stokes equa-

tions, (2.3) and (2.4). The Young-Laplace equation (2.6) provides then a boundary condi-

tion for the perturbed problem. After eliminating the 0th order terms using the unperturbed

hydrodynamic equations, the continuity and the Navier-Stokes equations yield, up to first

order in the perturbation,

uµ
(0)∂µδρ+ δuµ∂µρ(0) + (ρ(0) + P(0))∇µδu

µ + (δρ+ δP )∇µu
µ
(0) = 0 , (5.12)

(ρ(0) + P(0))
(
δuµ∇µu

ν
(0) + uµ

(0)
∇µδu

ν
)

+ (δρ + δP )uµ
(0)

∇µu
ν
(0)

+
(
gµν + uµ

(0)u
ν
(0)

)
∇µδP +

(
δuνuµ

(0) + uν
(0)δu

µ
)
∇µP(0) = 0 . (5.13)

The density and pressure perturbations are not independent. They are related by the

equation of state (2.16), valid also out of equilibrium. In particular, perturbation of the

first relation in (2.16) yields

δρ = (n+ 3)δP . (5.14)

Since we can expand any perturbation in a Fourier series, we restrict the analysis to a

generic mode and consider a perturbation that disturbs the boundary surface according to

r = R(t, z, φ) , R(t, z, φ) = Ro + ǫ eωteikz+imφ , ǫ≪ Ro , (5.15)
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where Ro is the unperturbed radius of the uniform tube (note that for the rotating n > 1

case it is θ-dependent). Positive ω describes an instability with wavenumber k. These

modes break axisymmetry if m 6= 0. The unit normal of (5.15) is

nµ = |n|−1
(
−R′

tδ
t
µ + δ r

µ −R′
φδ

φ
µ −R′

zδ
z
µ

)
, |n| =

(
1 −R′ 2

t +
R′ 2

φ

r2
+R′ 2

z

)1/2

.

(5.16)

Naturally, we look for perturbations of the fluid quantities that have the same form as the

boundary disturbance,

δQ(t, r, z, φ) = δQ(r)eωteikz+imφ , δQ ≡ {δuµ, δP, δρ} . (5.17)

The perturbed hydrodynamic equations (5.12) and (5.13) must be supplemented by

appropriate boundary conditions. The first one demands normal stress balance on the

boundary. This means that the pressure perturbation that solves (5.12) and (5.13) must

also satisfy the third perturbed hydrodynamic equation, namely the equation that follows

from perturbing the Young-Laplace equation (2.6),

BC I : δP
∣∣
bdry

≃ σ
[
K
∣∣
R(t,z,φ)

−K
∣∣
Ro

]
−
[(
P

(0)
< − P

(0)
>

) ∣∣
R(t,z,φ)

−
(
P

(0)
< − P

(0)
>

) ∣∣
Ro

]
,

(5.18)

where on the rhs we evaluate the expression at the perturbed boundary r = R(t, z, φ)

defined in (5.15) and subtract the unperturbed contribution evaluated at r = Ro. For our

plasma, P
(0)
< − P

(0)
> is obtained from (2.20), and the extrinsic curvature is given from its

definition (2.6) using the unit normal (5.16).

The second boundary condition is a kinematic condition requiring that the normal

component of the fluid velocity on the boundary satisfies the perturbed version of (2.2),

uµ
(0) δnµ + δuµn

(0)
µ = 0, where δnµ ≡ nµ

∣∣
R(t,z,φ)

− n
(0)
µ and the unperturbed normal is

n
(0)
µ ≡ nµ

∣∣
Ro

= δr
µ. This ensures that the velocity perturbation leaves the fluid confined

inside the boundary. This boundary condition then reads

BC II : δur
∣∣
bdry

≃
(
1 −R2

oω
2
φ − ω2

z

)− 1

2 (ω + imωφ + ikωz) ǫ e
ωteikz+imφ . (5.19)

We have now all the ingredients needed to find perturbations of the form (5.15)

and (5.17) that might develop an instability on the tube. We will find that there is indeed

a long wavelength instability known in non-relativistic systems as the Rayleigh-Plateau

instability (see for example [30]). It afflicts our plasma tube when, roughly, its length is

larger than its transverse radius. We will first analyze this instability and its dispersion

relation ω(k) for a static uniform tube in any dimension n. This is the simplest case where

the crucial ingredients necessary to activate the instability are present. Then we will study

the changes introduced in the instability properties by rotation and boost, as well as the

effects of non-axisymmetric modes. This will be done in the n = 1 case, where the analysis

can be done analytically, but we expect the results to hold qualitatively also for n > 1.

Finally, we will discuss briefly the subleading effects that viscosity would introduce in the

dispersion relation.
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5.2.1 Perturbations of static tubes in any dimension

Consider a static uniform plasma tube with unperturbed radius Ro and uµ
(0) = δµ

t, in

(n+3) flat spacetime dimensions, and deform its boundary by axisymmetric perturbations

(m = 0) of the form (5.15). The perturbed continuity and Navier-Stokes equations, (5.12)

and (5.13) have unstable modes that correspond to the Rayleigh-Plateau instability, as we

show in the sequel. Solving (5.13) with perturbations (5.17), we find that the non-vanishing

δuµ are (at higher order other components will arise)

δur(r) = −ω−1
(
ρ(0) + P(0)

)−1 d δP (r)

dr
, δuz(r) = −i k

ω

(
ρ(0) + P(0)

)−1
δP (r) , (5.20)

which, replaced in the continuity equation (5.12), give

d2δP (r)

dr2
+
n

r

d δP (r)

dr
− p2δP (r) = 0 , p = k

(
1 + (n+ 3)

ω2

k2

) 1

2

. (5.21)

The ω term in the definition of p arises from the first term in (5.12) proportional to δρ and

use of the equation of state (5.14). Equation (5.21) is a modified Bessel equation, whose

solutions are the modified Bessel functions of the first kind I±n−1

2

(pr) and second kind

Kn−1

2

(pr). Of these, I−n−1

2

(pr) and Kn−1

2

(pr) diverge as r−
n−1

2 as r → 0 and we discard

them. Therefore, the regular solution of (5.21) at the origin is

δP (r) = Ar−
n−1

2 In−1

2

(pr) ,

δur(r) = − A

ω
(
ρ(0) + P(0)

) r−
n−1

2

(
p I ′n−1

2

(pr) − n− 1

2r
In−1

2

(pr)

)
,

δuz(r) = − ikA

ω
(
ρ(0) + P(0)

) r−n−1

2 In−1

2

(pr) , (5.22)

where we defined I ′ν(x) ≡ ∂xIν(x), and where A is a constant that is fixed by the boundary

condition (5.18) to the leading-order value

A ≃ ǫσ
R

n−1

2
−2

o

In−1

2

(pRo)

(
k2R2

o + ω2R2
o − n

)
. (5.23)

With this knowledge, and using the relations I ′ν(x) = Iν+1(x) + ν
xIν(x) and (2.20), the

boundary condition (5.19) yields the desired dispersion relation ω = ω(k), which reads

ω2 =
n+ 3

n+ 4

σ

ρ∗R3
o

pRo In+1

2

(pRo)

In−1

2

(pRo)

(
n− k2R2

o − ω2R2
o

)
, p = k

(
1 + (n+ 3)

ω2

k2

) 1

2

.

(5.24)

A plot of this dispersion relation ω(k) for several values of the dimension n is shown in

figure 5. To obtain these plots we have needed to specify the value of σ
ρ∗Ro

. This amounts

to considering plasma tubes of a specific width Ro relative to the length scale σ/ρ∗, which

is essentially the mean free path of the plasma. In principle we should vary this width and

study the dispersion relation as a function of it. The shape of the dispersion relation is
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Figure 5. Plot of the dimensionless dispersion relation ω(k) for the Rayleigh-Plateau instability

in a static uniform tube for several spacetime dimensions d = n + 3. The instability strength

and threshold wavenumber increase as the spacetime dimension grows. Intuitively, this is because

the “same” perturbation decreases more the surface area of the plasma boundary (increases more

the plasma entropy) as the dimension increases. Note also that the most unstable mode satisfies

ωRo

∣∣
max

≫ σ
ρ0Ro

, and is thus within the regime of validity of the hydrodynamic description (see

section 6). This plot is to be qualitatively compared with figure 3 of [5] for the GL instability.

indeed modified as σ
ρ∗Ro

grows to values of order one. However, the validity of the fluid

description requires that we consider small σ
ρ∗Ro

(see section 6). It turns out that in this

case the qualitative aspects of the dispersion relation hardly change for different values of
σ

ρ∗Ro
and the shapes shown in figure 5 are generic. For definiteness, we have taken

σ

ρ∗Ro
=

12

n+ 6
10−6 , (5.25)

so as to produce the plot. But we insist that the dimension-dependence in this choice, and

hence in the curves in the plot, is completely arbitrary: it only amounts to choosing tubes

of a particular width in each dimension.

The Rayleigh-Plateau instability is active when ω > 0. The instability gets stronger as

the spacetime dimension increases since the threshold wavenumber, as well as the wavenum-

ber and frequency where the maximum instability occurs, increase when n grows.

There are two special points that we can read easily from (5.24). One is the point where

the curves cross ω = 0, which gives the threshold wavenumber below which the Rayleigh-

Plateau instability is active: kRo =
√
n. So unstable modes satisfy condition (5.5), con-

firming the threshold mode that we obtained previously from entropical or energetical

arguments in subsection 5.1. The second point is at k = 0, and one can expand the Bessel

functions in (5.24) to check that ω at k = 0 always vanishes, independently of σ
ρ∗Ro

.

5.2.2 Rotating and boosted plasma lumps

We want to consider now how rotation and boost of the fluid modify the dispersion relation,

and study the effect of non-axisymmetric modes (m 6= 0). We shall restrict to the n = 1 case

where an analytical approach is viable. Take a uniform plasma tube rigidly rotating with

velocity (4.2) and with unperturbed constant radius Ro. The unperturbed state satisfies,

once the equation of state for the fluid is introduced, equations (2.16) and (2.20) with n = 1.
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Disturb now the plasma boundary with perturbations of the form (5.15). To get the

velocity perturbations we have to solve (5.13) assuming perturbations of the form (5.17).

One finds, after use of (5.14), (in (5.26)–(5.28) we restore the velocity of light factor c to

make the perturbative expansion that we do next more clear)

δut(r) =
ωφr

2

c2
δuφ(r) ,

δur(r) = − 4

5ρ∗

̟γ−1

̟2 + 4ω2
φχ

[
∂r δP (r) +

(
2im

r

ωφ

̟
− 3γ2r

ω2
φ

c2

)
δP (r)

]
,

δuφ(r) =
4

5ρ∗

γ−1

̟2 + 4ω2
φχ

[
2ωφχ

r
∂r δP (r) − im̟

r2
δP (r) − ωφγ

2

c2
(
̟2 + 10ω2

φχ
)
δP (r)

]
,

δuz(r) = −i 4

5ρ∗γ

k

̟
δP (r) − 4γ

5ρ∗c2

[
ωzδP

−
2ω2

φωzr

̟2 + 4ω2
φχ

(
∂r δP (r) +

2im̟

r

ωφ

̟
δP (r) −

3ω2
φγ

2r

c2
δP (r)

)]
, (5.26)

where we defined

̟ ≡ ω + imωφ + ikωz , χ ≡ 1 +
ω2

φγ
2r2

c2
. (5.27)

Note that (5.26) satisfies the perturbed version of uµuµ = −c2, namely u
(0)
µ δuµ = 0.

Equations (5.26) can now be replaced in the continuity equation,

d δur

dr
+

1

r
δur + im δuφ + ik δuz + ω δut + 4γ2r

ω2
φ

c2
δur +

16̟γ

5ρ∗c2
δP = 0 . (5.28)

As will become clear, it is not possible to get an analytical expression for the dispersion

relation unless we work in the small velocity regime, ωφRo, ωz ≪ c. Since the Rayleigh-

Plateau instability is already present in the static case and we just want to find if adding

velocity to the solution increases or decreases the instability strength and threshold unstable

mode, we will solve the hydrodynamic equations in this regime (we will further represent

higher order terms of the velocity generically by O(ωi)). This restriction is also justified

by the fact that the regime of validity of the hydrodynamic description and thus of our

results is restricted to small rotation rates, as we will argue in section 6. So, to leading

order (5.26) reduces to

δut(r) = O(ω2
i ) ,

δur(r) = − 4

5ρ∗

̟

̟2 + 4ω2
φ

(
∂r δP (r) +

ωφ

̟

2im

r
δP (r)

)
+ O(ω2

i ) ,

δuφ(r) =
4

5ρ∗

̟

̟2 + 4ω2
φ

1

r

(
2ωφ

̟
∂r δP (r) − im

r
δP (r)

)
+ O(ω2

i ) ,

δuz(r) = −i 4

5ρ∗

k

̟
δP (r) + O(ω2

i ) , (5.29)
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The perturbed continuity equation yields then to leading order in the velocity,8

d2δP (r)

dr2
+

1

r

d δP (r)

dr
−
[
η2+

m2

r2

]
δP (r) +O(ω2

i ) = 0 , η ≡ k

(
1 +

4ω2

k2

) 1

2

(
1 +

4ω2
φ

̟2

)1/2

.

(5.30)

This is again a modified Bessel equation with solutions Im(ηr) and Km(ηr) (note that if

we had kept higher order terms we would not be able to solve analytically the differential

equation). We discard the Km(ηr) solution that diverges at the origin and thus obtain the

regular solution

δP (r) ≃ AIm(ηr) ,

δur(r) = − 4A

5ρ∗

̟η

̟2 + 4ω2
φ

(
I ′m(ηr) +

2im

ηr

ωφ

̟
Im(ηr)

)
+ O(ωi) . (5.31)

The final expression for δuφ, δuz (that we do not need) can then be obtained from (5.29).

The boundary condition (5.18) fixes the ratio A/ǫ to leading order as

A

ǫ
≃ σR−2

o

Im(ηRo)

[
k2R2

o + ω2R2
o − 1 +m2 − 5

4

ρ∗ω
2
φR

3
o

σ

(
1 − ω2

φR
2
o − ω2

z

)−7/2

]
. (5.32)

Use of this ratio on the boundary condition (5.19) yields finally the leading dispersion

relation ω(k)

̟2 ≃ −4ω2
φ +

4σ

5ρ∗R3
o

[
ηRo Im+1(ηRo)

Im(ηRo)
+m

(
1 + i

2ωφ

̟

)]

×
(

1 −m2 +
5

4

ρ∗ω
2
φR

3
o

σ

(
1 − ω2

φR
2
o − ω2

z

)−7/2 − ω2R2
o − k2R2

o

)
. (5.33)

A plot of this dispersion relation ω(k) for different values of ωφ (and ωz = m = 0) is

shown in figure 6. The dispersion relation (5.33), valid in the small velocity regime, is

expect to be a good approximation up to velocities of the order vo ∼ 0.1 − 0.5. The

Rayleigh-Plateau instability is active when ω > 0. The marginal unstable mode with

ω = 0 satisfies condition (5.10), confirming the threshold mode obtained in subsection 5.1.2.

As the rotation ωφ is increased, the threshold wavenumber, as well as the wavenumber

and frequency where the maximum instability occurs increase, and the instability grows

stronger. Fixing ωφ 6= 0, increasing ωz also makes the instability stronger. Finally note

that contrary to the static case where only axisymmetric modes were unstable, now non-

axisymmetric modes can also become unstable for sufficiently high rotation.

Note that we decided to keep the higher order terms in velocities in the boundary

condition (5.32) and in (5.33) instead of doing a Taylor expansion. The reason being

that from the entropic/energetic computation we get the threshold condition (5.10) in the

marginal unstable case. The computation leading to this condition is exact to all orders in

8Notice that the last term in (5.28) has a contribution ω/c2 that we keep because our expansion is only

on the velocities but not on the frequency. This contribution is responsible for the ω2/k2 term in η.
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Figure 6. Plot of the dimensionless dispersion relation ω(k) for the Rayleigh-Plateau instability in

a rotating uniform tube for dimensionless angular velocity vo = 0; 5×10−4; 10−3, where vo ≡ ωφRo.

The instability strength and threshold wavenumber increase as the rotation grows. Intuitively,

this is because the centrifugal force scales with the radial distance and thus it is bigger in a crest

than in a trough of the instability. The numerical data corresponds to take 4σ
5ρ∗Ro

= 10−6, ωz = 0

and m = 0. The dispersion relation (5.33), valid in the small velocity regime, is expect to be a

good approximation up to velocities of the order vo ∼ 0.1 − 0.5. Note also that the most unstable

mode satisfies ωRo

∣∣
max

≫ σ
ρ0Ro

, and is thus within the regime of validity of the hydrodynamic

description (see section 6). This plot should be compared with figure 1 of [40] for the GL instability

of rotating black strings.

the velocity, so we do not expand (5.32) that is responsible for the unstable wavenumber

cut-off in (5.33).

In section 6 we will discuss the regime of validity of the hydrodynamic description.

Our results are valid for {ωRo, kRo} ≫ σ
ρ0Ro

. There is a wide range of parameters for

which this condition is satisfied. In particular, the physically relevant most unstable mode

of figures 5 and 6 fits very well in this regime. Near the extreme points of the dispersion

relation where ω = 0 the results must be read with caution.

5.2.3 Viscosity

We have neglected in our analysis the effects of viscosity, which is absent from station-

ary solutions but should play a role in time-dependent processes such as the Rayleigh-

Plateau instability.

These effects are well understood in the the non-relativistic Rayleigh-Plateau instabil-

ity, which has been the object of exhaustive theoretical, numerical and experimental study.

It does not seem unreasonable to assume that the effect of viscosity in the relativistic and

non-relativistic instabilities is qualitatively similar.

Viscosity plays a subleading role in the activation of the RP instability, although the

instability can get considerably weaker if the viscosity is very high. Generically, it increases

the wavelength of the most unstable mode, and weakens the strength of the instability [30].

Viscosity has been experimentally seen to play an important role at later stages in the time

evolution of the instability, when the fluid tube pinches off, as we discuss in section 7.

Dissipation increases considerably the technical challenge of solving numerically the

hydrodynamic perturbed equations. This is because without it, these are ODEs with
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boundary conditions, while when dissipation is present we must deal with a coupled system

of second order differential equations for the pressure and velocity perturbations, which

cannot be studied analytically and requires advanced numerical treatment.

6 Regime of validity

We now discuss the limits of validity of the different approximations we have made in our

derivations in the previous sections.

First of all, for the fluid description of the deconfined plasma to be accurate the

thermodynamic quantities must vary slowly over the mean free path ℓmfp of the fluid,

which is of the order of the mass gap of the theory, or equivalently of the order of the

deconfinement temperature. That is, all length scales λ in the fluid must be

λ≫ T−1
c ∼ σ

ρ0
. (6.1)

For the same reason, thermal fluctuations must remain small. A good estimate for the

valid regime is obtained when the maximum fractional rate of change of the fluid local

temperature is small
δT
Tc

∣∣
max

∼ ∂r ln γ
∣∣
max

≪ 1 . (6.2)

This occurs for
ω2

φR
2
o

1 − ω2
φR

2
o

≪ ρoRo

σ
. (6.3)

For plasma balls and rings this condition is satisfied for a wide range of lumps as long

as we are away from extremality where the temperature vanishes [13]. For plasma tubes

the angular velocity ωφ increases with Ro so the above condition is fulfilled as long as the

tubes do not rotate too fast. This does not affect our analysis in section 5.2.2 since, in

order to have analytic control on the equations, we only considered the regime of small

rotation. This condition also imposes restrictions on the validity of the Rayleigh-Plateau

instability analysis. To guarantee that the thermodynamic quantities of the fluid vary on

a length scale small when compared with the mean free path we must demand that the

Rayleigh-Plateau unstable frequencies and wavenumbers satisfy

{ωRo, kRo} ≫ σ

ρ0Ro
. (6.4)

Since the most unstable mode dominates the instability we must guarantee that this condi-

tion is satisfied in the vicinity of the maximum of the dispersion relation. We find that for
σ

ρ0Ro
. 10−4 this condition is satisfied, and things get better as σ

ρ0Ro
becomes smaller. Re-

call that for the plots of figures 5 and 6 we took σ
ρ0Ro

∼ 10−6, well within the validity range.

Second, the interface between the confined and deconfined phases, i.e., the fluid surface,

has a finite thickness of the order 1/Tc [12], and therefore the delta-like surface approxi-

mation we used is valid provided that the curvature of the surface is small with respect

to 1/Tc. So, for plasma balls and rings the analysis is valid when the boundary radii Ro,

Ri, and Ro − Ri are large compared to T−1
c . This is the case if the plasma energy is large
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and away from the extremal configurations [13]. For plasma tubes the requirements are,

analogously, Ro, Rm, and Ro −Rm much larger than T−1
c .

Finally, we neglected the dependence of the surface tension on the temperature and

other thermodynamic quantities of the fluid. For consistency we must then demand that on

the boundary between the confined and deconfined phases the temperature of the plasma

must remain everywhere close to the critical temperature Tc. The values of T and Tc at

the boundary surfaces remain close for a large range of energies and angular momenta (see

figure 9 of [13]), both for balls and rings as well as for plasma tubes, always away from the

extremal limits.

7 Rayleigh-Plateau and Gregory-Laflamme

The dynamics of lumps of fluid that we have analyzed should admit, via the reasoning in [7],

a mapping to the dynamics of black holes near the infrared bottom in SS-AdS, in the limit in

which the black hole size is much larger than the thickness of the domain wall that connects

it to the confining ‘AdS soliton’ vacuum. In this case, the correspondence between black

holes and lumps of fluid can be established and the solutions of the fluid equations can be re-

garded as actual gravitational calculations in a controlled perturbative (in boundary deriva-

tives) expansion to the Einstein equations in AdS, reformulated in an appropriate way.

This implies that our results for the dynamics of plasma tubes in d dimensions can

be regarded as describing gravitational physics of black strings in SS-AdSd+2 spacetime.

However, such black string solutions have not been constructed directly yet and therefore a

comparison cannot be made between results obtained using dual-fluid techniques and more

conventional gravitational analyses.

Nevertheless, it is remarkable that the dynamics of fluid tubes from our analysis is

strikingly similar to what is known for black strings in asymptotically flat space, for which

a fairly large amount of results are available. It has been pointed out that all the different

plasma ball, pinched ball and plasma ring phases found in [13, 14] in d dimensions have

black hole, pinched black hole, and black ring analogues in asymptotically flat d + 2-

dimensional gravity [31–33].

This parallelism extends to most aspects of the solutions we have discussed. Ref. [20]

already observed that the phase diagrams for static plasma lumps (shown here in figure 1)

resemble the corresponding phase diagrams for black strings and black holes localized in a

Kaluza-Klein circle [16, 34]. Let us add that if we compare our figure 1.a with figure 3 of [27],

the two figures can be strikingly superposed. Note that in figure 3 of [27] the gravitational

merger between the non-uniform black string and localized black hole branches is not shown

because the available numerical code breaks in this region [34]. It is however conjectured

that the two branches do indeed converge into a topology-changing merger with a conical

structure [35], and there is numerical evidence for this [36]. The approximations for the fluid

description become invalid close to this transition point (as do, too, the gravitational ones),

but certainly a topology-changing transition seems to take place when this is neglected and

the calculations are pushed until pinch-off. The similarities between the two approaches

are strong enough to lend credence to the existence of the transition. What seems less clear
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is whether the transition in the fluid involves the same conical structure as in [35, 36]. The

strong gravitational interaction between the images of localized black holes close to the

merger, compared to the absence of interaction between the images of fluid balls, indicates

the possibility of at least differences of detail in the two cases.

An even more uncanny similarity in the phase structure of both fluid tubes and black

strings refers to the critical dimension of spacetime for which the transition between uniform

and non-uniform phases changes from first to second order.9 For fluid tubes ref. [20] found

(and we have reproduced) that this happens at d∗ = 11, while for black strings it happens at

D∗ = 14 for the microcanonical ensemble [37] and D∗ = 13 for the canonical ensemble [38].

If we assume that, as in the AdS context, the d-dimensional fluids are to be related to

D = d+ 2-dimensional black holes, then the apparent closeness in the values of the critical

dimensions is truly startling.

The qualitative similarities between the dispersion relations in the Rayleigh-Plateau

and in the Gregory-Laflamme instability have also been pointed out before for the case

of static tubes and strings [1]. The parallels extend to further dynamical details, such

as the fact that for static solutions, non-axisymmetric modes (m 6= 0) are stable in the

plasma, while the GL instability also only affects s-modes [29, 39]. Furthermore, a boost

along the static plasma tube has the same effect as boosting the black string: it is only

a kinematic effect increasing the threshold wavenumber for s-modes and leaving all other

modes stable [29].

Rotating black strings are affected by the same instability. The GL instability in

rotating black strings was analysed in [40]. They concluded that the GL instability persists

for rotating black strings all the way to extremality and the threshold wavenumber increases

as the rotation grows (see figure 1 of [40]). We could only treat small rotation analytically,

but our dual plasma results, summarized in figure 6, agree with this: the instability persists

as rotation grows and it actually gets stronger, with the critical wavenumber increasing

with the rotation. In fact this can be understood intuitively. The centrifugal force scales

with the radial distance, so it is larger at the crest of the non-uniformity triggered by the

RP instability than at the trough. As a result the distance between the crest and trough

is stretched: rotation enhances the instability. An interesting qualitatively new feature

that rotation adds is that non-axisymmetric modes (m 6= 0) can become unstable to the

Rayleigh-Plateau instability for sufficiently large rotation.

Among the phases for rotating tubes that we have uncovered, a particularly interesting

one is the pinched non-uniform tube (pNUT), since it has no analogue for static tubes. Its

shape certainly suggests that we should think of it as the result of a bulge in the non-

uniform tube beginning to behave like a rotating ball that develops a pinch. Since pinched

black holes are also expected to exist in six-dimensional vacuum gravity (actually in any

dimension larger than five) [32, 33], it is then natural to conjecture that rotating black

strings in six dimensions also have phases of pinched non-uniform black strings, in addition

to the already known uniform black strings, uniform black tubes (i.e., the black ring of [31]

times a flat direction), and the expected more conventional non-uniform black string.

9In this and in the next section we shall use d and D, respectively, for the spacetime dimensions in which

the fluid lumps and the black holes live.
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Such remarkable similitude between the dynamics of fluid tubes and of vacuum black

strings makes it tempting to try to push it further in order to address an outstanding open

problem: the time evolution of the GL instability and its final fate. The final stage of

this evolution is not known in gravity, since the available numerical code, which has been

developed only for D = 5, breaks down for late times [41]. On the other hand, the time

evolution of the (non-relativistic) RP instability has been the object of several experimen-

tal and numerical studies, see e.g., [42] which considers viscous fluids in four spacetime

dimensions (unfortunately, higher-dimensional fluids remain unavailable experimentally).

We would expect that for static initial data, the classical and relativistic evolution should

not differ substantially. It is then justified to compare the initial time evolution of the GL

instability, figure 4 of [41], with the early stage dynamical evolution of the RP instability,

e.g., figure 1 of [42]. There appears to be a nice match between the two. In the fluid, where

the evolution has been followed until its endpoint, the uniform tube pinches-off and breaks.

Starting from a single sinusoidal perturbation in a cylindrical liquid bridge (fluid tube),

the higher harmonics generated by non-linear effects are responsible for the development

of a long neck that breaks the tube in a self-similar process. One ends up with an array of

satellite drops with different sizes [42].10

We may expect such behavior to be representative of the time evolution of the instabil-

ity of fluids in subcritical dimensions d < d∗ = 11. A numerical study of the non-relativistic

evolution for inviscid fluids in several dimensions has been made in [21]. The endpoint of

the RP instability does appear to differ for subcritical and supercritical dimensions. For

d < d∗ the endpoint is a drop or an array of drops. Again, it is tempting to argue in

favor of a similar evolution in the gravitational system, in which the black string pinches

off completely and forms an array of black holes, possibly of different sizes.11 The same

caveats apply here as in the discussion of the ball-tube/black hole-black string transition:

the fluid description breaks down near pinch-off; and blobs of fluid do not self-interact

whereas gravitating horizon blobs do. However, it is already significant that pinch off does

occur for viscous fluids, and that no study reveals any sign of the instability slowing down

as pinch-off is approached in d < d∗.

The situation may be cleaner above the critical dimension. Ref. [21] finds that in

this case the endpoint of the RP instability is a non-uniform tube with constant mean

curvature. In this case there is no concern about the validity of the fluid description, since

the tube can remain thick enough during its evolution. The role of viscosity is not too

clear, but it might be expected to smooth the evolution. This suggests that the endpoint

of the GL instability on a black string above the critical dimension could be a non-uniform

black string, like ref. [43] suggested.

The non-linear GL evolution when rotation is present has not been studied yet but

again, the (non-relativistic) RP evolution of fluids is well studied (see e.g., [44]): rotation

10Actually, two main regimes have been observed depending on the viscosity of the fluid. For low viscosity,

there is repeated stretching and breakup, ending with several satellite droplets. For high viscosity, a single

breakup that takes a long time can occur and in the end a single satellite drop is formed.
11These have already been constructed in [22]. It is entropically favorable for these arrays of black holes

to merge into a single one.
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introduces twisting effects in the pinch off of the tube and as rotation increases a dramatic

centrifugal ejection of drops is observed (see the photographs of [44]).

Of course it is possible that black strings and black holes in vacuum gravity behave in a

closely similar way to fluids only as long as one considers configurations that are stationary,

slowly evolving, and/or not too non-uniform. The dynamics of vacuum gravity may depart

significantly from fluid dynamics away from these regimes and furthermore, in contrast to

the situation for gravity in AdS, it is not obvious whether it can be accurately pictured as

fluid dynamics in some controlled approximation. The next section addresses this issue in

more detail.

8 The black hole/fluid analogy revisited

The similarities discussed in the previous section naturally prompt the question of to what

extent we can trust fluid dynamics as a guide for unknown dynamics of vacuum black

holes in asymptotically flat space. In other words, since the analogy between fluids and

black holes was observed in the first place for asymptotically flat black holes, is there any

precise meaning to it? Clearly, we cannot just take the results for AdS black holes in the

limit in which the cosmological constant vanishes. The fluid description for AdS black

holes requires that their size be much larger than the AdS curvature radius, so black holes

smaller than this size fall outside the scope of the dual hydrodynamics.

We have discussed a number of qualitative or semi-quantitative features that fluid

lumps share with black holes in vacuum gravity. However, there is at least one crucial

difference that would appear to preclude a precise correspondence. Classical General Rela-

tivity in vacuum is a scale-invariant theory, which implies that all properties of a black hole

scale uniformly with mass. That is, all Schwarzschild black holes are essentially the same;

all Kerr black holes with the same value of J/GM2 also have the same properties; and

all black strings in Kaluza-Klein space are the same when the compact radius is scaled to

keep L/(GM)1/(D−2) constant, e.g., the Gregory-Laflamme threshold mode wavelength for

a static black string must scale like the inverse of the horizon transverse radius. This scale

invariance is not present for the fluid: the surface tension sets a scale that distinguishes

fluid lumps of different size: a fluid ball of a given radius is not simply a scaled-up ver-

sion of a ball of half that radius —for instance, the former can more easily break up than

the latter. For a large plasma ball, the relative entropy cost of breaking it in two pieces

becomes arbitrarily small as the radius R of the ball gets arbitrarily large. For instance,

for a ball of fluid with initial entropy Si, temperature Ti and radius Ri, that breaks into

two equal balls, each with entropy Sf/2, temperature Tf and radius Rf , keeping the total

energy unchanged, the ratio between final and initial entropies is

Sf

Si

∣∣∣∣
fluid

≃ Ti

Tf

(
1 +

σ

ρ

(
1

Ri
− 1

Rf

))
, (8.1)

where we have assumed that the ball radii are much larger than the length scale σ/ρ set

by the energy density ρ and surface tension σ of the fluid.12 To leading order, R−1
f =

12To leading order we can neglect the difference in energy density in the initial and final fluid balls.
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2
1

d−1R−1
i > R−1

i , and moreover, if the balls have negative specific heat the smaller final

balls will be hotter than the initial one, Tf > Ti, with Tf/Ti − 1 a positive and small

quantity of order σ/(ρRi). Then Sf < Si, so the process is suppressed, but the relative

entropy cost of breaking

∆S

S

∣∣∣∣
fluid

=
Sf − Si

Si

∣∣∣∣
fluid

≃ −δd
σ

ρRi
(8.2)

is small, with large fluid balls breaking more easily than smaller ones. Here δd is a positive,

dimension-dependent number which, for a plasma with the equation of state considered in

section 2.2, is

δd = (d− 1)
(
2

1

d−1 − 1
)
. (8.3)

For a Schwarzschild black hole, in contrast, the relative entropy cost for splitting into

two equal black holes keeping the total mass fixed, remains constant independently of the

black hole size,

∆S

S

∣∣∣∣
bh

=
Sf − Si

Si

∣∣∣∣
bh

= 2−
1

D−3 − 1 . (8.4)

It is amusing that, if we make the identification D = d + 2 that is suggested by the

duality between SS-AdSd+2 black holes and d-dimensional fluid lumps, the powers of 2 in

these formulas coincide. But on the other hand, the identification between (8.2) and (8.4)

appears to require that σ ∼ ρR. This is not only a rather bizarre behavior for the surface

tension, which grows linearly with the size of the fluid ball. It also implies that the black

hole is equated with a fluid ball that is always small,13 in the sense that surface effects

are always strong so the regime (6.1) is never attained. The apparent reason for this is,

again, that vacuum gravity does not have a scale parameter to characterize a black hole as

parametrically large.

So the crux of the problem is that we are trying to relate objects in parameter spaces of

different dimensionality! For the black holes, as argued, we are always free to fix a scale so

as to set the mass, or the length (GM)
1

D−3 , equal to one, and then completely characterize

the black hole by its angular momenta. For a fluid lump, the theory comes with a scale

already, namely the length scale σ/ρ, so in order to specify a fluid ball we must provide

its size relative to that scale (or its energy), and its angular momenta — i.e., one more

parameter than for a black hole.

One may point out that a natural scale that appears in black hole physics is the

Planck length, which does allow to make a distinction between small and large black holes.

However, this is of no help to make a better comparison between vacuum black holes and

fluid lumps, since in the limit in which the ‘cutoff’ scale becomes negligible, namely, when

the fluid lumps or the black holes become very large relative to that scale, their properties

are clearly different, as illustrated above. It would be desirable to have a way of deciding

whether a black hole is large or small within classical vacuum General Relativity, but this

seems hard in the absence of a classical fundamental scale.

13This is indeed the case for small black holes in AdS, which resemble asymptotically flat ones.
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Does this, then, imply, that there can be no limit in which the equations of the dynamics

and the phase space of vacuum black holes can be mapped into the equations and phase

space of a fluid, with effective parameters that satisfy

σ

ρR
≪ 1 ? (8.5)

In the following we make some observations that suggest otherwise.

Let us first note that an obvious difference between fluids and black holes is that two

disconnected lumps of fluid do not attract each other (at least within the framework in

which we are considering fluids). This must obviously imply that some phenomena, like the

deep non-linear evolution of the GL instability, or the mergers involving vacuum black holes

or black rings, may behave differently than those for their fluid counterparts: in the former

case the gravitational attraction between different lumps on the horizon presumably plays

a role similar to the attraction between two black holes and thus affects their evolution.14

Thus, any limit in which vacuum black holes behave accurately as fluids must be a limit

in which this gravitational attraction is suppressed.

Such a limit seems to arise if we consider gravity in a spacetime with a large number

of non-compact dimensions. As the number of dimensions increases, the gravitational

potential becomes steeper and more localized near the source, and flatter and weaker at

larger distances. Furthermore, since the black hole entropy

S ∝M
D−2

D−3 (8.6)

is directly proportional to the mass in the limit D → ∞, there is no entropy cost in splitting

a black hole: (8.4) yields ∆S/S → 0 in this limit. As we observed above, this is just like

for a large drop of fluid. Indeed, both for a fluid with vanishingly small surface tension

and for a black hole in D → ∞ the (Hagedorn-like) relation E = TS is satisfied.15

This enhanced instability of the black hole horizon to break up has a rather precise

manifestation in the equivalence between the Gregory-Laflamme and Rayleigh-Plateau in-

stabilities. Given the observations above, we can expect a black string in D → ∞ to be

able to split into fragments of any length, i.e., the wavelength of the threshold mode is

expected to approach zero. Indeed, the GL instability in arbitrary dimension has been

studied in [45], and even if the equation for the threshold mode is fairly complicated, it

simplifies greatly if we expand in 1/D to leading order,

χ′′(r) +
D

r
χ′(r) − k2χ(r) = 0 . (8.7)

This is essentially the same as the equation for the RP threshold (ω = 0) mode (5.21),

and it becomes precisely the same if we identify D ≃ n ≃ d for large D and d. The

wavelength of the GL threshold mode in this limit vanishes as rs/
√
D, in accord with the

expectation above.

14That these effects must, of necessity, be strongly suppressed for the class of AdS black holes that are

dual to plasma lumps, is a remarkable consequence of the duality.
15For the fluid lump E here is the difference between its energy and the energy of the (unconfined) vacuum

it displaces.
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Expanding on these observations, we can try to identify what plays the role of the

dimensionless quantity σ/(ρR) in the gravitational side. The answer is obvious: since the

only small dimensionless parameter we have at our disposal in the gravity side is 1/D, both

must be related. A more precise mapping can be obtained by comparing (8.2) and (8.4).

For large D, the latter becomes

∆S

S

∣∣∣∣
bh

≃ − log 2

D
, (8.8)

which leads to the identification
σ

ρR
∼ 1

D
. (8.9)

We are not necessarily proposing that the limit d→ ∞ must be taken in the fluid side too,

but if we do, and use the value (8.3), δd → log 2, then the identification becomes precise,
σ

ρR = D−1, at least to leading order in 1/D.

Eq. (8.9) illustrates a main feature of our proposal. As we have discussed, the main

problem for a fluid/black hole correspondence is the apparent absence in classical vacuum

GR of a way to decide whether a black hole is intrinsically large or small. Our suggestion

amounts to saying that a black hole is large or small depending on the number of spacetime

dimensions it lives in. Black holes in low dimensions are to be regarded as tiny droplets,

with surface energy comparable to bulk energy, whereas black holes in very high dimensions

behave rather like large lumps of fluid. In other words, we are using D as an additional

parameter characterizing a black hole. We are making crucial use here of the observation

that in classical General Relativity in vacuum the only dimensionless tunable parameter

at our disposal is D, a point that has also been urged by B. Kol and collaborators [46].

It might be that these similarities between fluids and black holes at large D only

reflect purely geometrical aspects of the relation between volumes and areas at very high

dimensions (note in particular that D, but not σ/(ρR), appears in (8.7)). But at any

rate we feel that these observations suggest that perhaps by considering a 1/D expansion,

and possibly accounting for the effects of gravitational interaction in this expansion, a

more accurate map betwen vacuum black holes and fluids may be achieved that allows to

understand not only the similarities that have been observed, but also the differences.
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